
Customizing the Agilent TestExec SL
Operator Interface using Visual Basic

Application Note

Overview

This application note describes how

users of the Agilent TestExec SL

software can customize the operator

user interface using Visual Basic.

TestExec SL allows you to create

custom operator interfaces with

Microsoft® Visual Basic and other

programming platforms that support

the ActiveX controls (e.g. Microsoft

Visual C++). Generally, using Visual

Basic is the preferred method

because of its simplicity and flexibility

amongst the textual programming

environment.

The best way to begin learning how

to customize an operator interface is

through understanding the working

examples. This application note will

familiarize you with basic features

of the operator interface and some

enhancements that you may consider

adding to your customized interface.

Operator interface is the user interface

designed for system operators to

control the test system in the manu-

facturing environment. It is usually

simplified for non-technical operators

and has a lower level of access to the

testplan and features of TestExec SL.

Different users will have different

requirements for the user interface.

TestExec SL offers a customizable

user interface that can vary in the

appearance, features, interactivity and

access levels required. It may range

from simple customization to include

just basic functions of start and stop

buttons, and a pass/fail indicator; or

it can be as complicated as to contain

multiple-level interfaces for user

interactions, with access to external

hardware and database sources.

Operator Interface Overview

2

Understanding Agilent’s TestExec SL ActiveX Control

TestExec SL
Visual Basic code

in operator
interface

properties

methods

events

TestExec SL
ActiveX Control

Figure 1. TestExec SL ActiveX control in Visual Basic

TestExec SL n

Registered testplans

Registered UUTs

Security

Symbol tables

Registered testplan

= Collection

= Object

Registered UUT

Symbol table Symbols Symbol

Path categories Paths

Preference Topology files Topology file

Multi UUT paths Multi UUT path

Revision

Statements Statement Actions

Limit symbols Action Limits

Symbol Symbols (Parm block) Limit

Tests Test Symbol Symbols

Testplan history Symbol

Variants

Testplan

Figure 2. Hierarchy of TestExec SL ActiveX control collections and objects

TestExec SL ActiveX control library

is a collection of automation objects

with predefined properties and meth-

ods. The Visual Basic code controls

TestExec SL as a separate process,

changing its setting (properties),

sending it commands (methods), and

In order to follow through the

example below, you should be familiar

with Visual Basic 6 terminology and

concept, its integrated development

environment (IDE) and the use of

ActiveX controls. The operator inter-

face will communicate with TestExec

SL through a special set of TestExec

SL ActiveX controls.

waiting for progress to occur (events).

Remember to add the “Agilent

TestExec SL control library” from the

Visual Basic Components List to the

toolbox before using them in your

interface.

3

Control Type Name Properties
Form frmSimple Caption = Simple Agilent TestExec SL

operator interface

Listbox lstTestplans N/A

Command button cmdLoad Caption = Load testplan

Command button cmdRun Caption = Run

Command button cmdStop Caption = Stop

Command button cmdExit Caption = Exit

Textbox txtTxSLState Font = 24 point, Text = State, Alignment

= Center

Checkbox chkReportPasses Caption = Report passes

Rich-textbox rtbReport Scroll bars = Both

Txsl testexecsl1 Assume all defaults

Table 1. Properties of controls

Figure 3. Simple Agilent TestExec SL operator interface

Designing the Operator Interface Layout

The first step in customizing an

operator interface using Visual Basic

is to design its interface layout. To

design an effective operator interface,

other than knowing the needs of your

audience, you also have to consider

other design practices. A good inter-

face design layout would have the

following characteristics:

• Simple appearance with adequate

information

• Logical layout with clear flow of

tasks

A simple operator interface should

include the basic features of (1)

selecting and loading a testplan to

test a specific product, (2) running

and stopping the testplan, (3) show-

ing the test status of either pass or

fail, (4) optionally reporting the test

results, and (5) exiting the operator

interface. Below is an example show-

ing the layout of a simple operator

interface.

This operator interface will populate

a list box with the paths of registered

testplans. It will then allow the run-

ning and stopping of the testplans.

The state of testplan execution is

maintained in a text box. The testplan

report information is maintained in a

rich text box. The user is given one

aspect of control of the testplan, and

that is to enable or disable the report-

ing of passed tests.

It is important that you define the

physical appearance and names of

all the controls at this stage prior to

coding. Use the following properties

window to set the properties of con-

trols in Visual Basic environment.

4

Coding the Event Handlers for Your Operator Interface

Upon completion of the interface

layout design, the appropriate event

handlers have to be created for differ-

ent controls in the operator interface.

A. Loading registered testplan

A list box is added in the interface to

display a list of registered testplan

for user’s selection. All testplans are

registered in the preferences.upf

file prior to running the operator

interface. This allows the developer

to control and ensure that only desig-

nated testplans are accessible by the

operators.

On the initial load of this inter-

face, the coding will check the

RegisteredTestplan collection of

TestExec SL, and use the results to

populate the list box lstTestplans.

Private Sub Form_Load()
 Dim RegisteredTestplanInstance As Object
 Set RegisteredTestplanInstance = TestExecSL1.
RegisteredTestplans(1)
 For Each RegisteredTestplanInstance In TestExecSL1.
RegisteredTestplans
 lstTestplans.AddItem
RegisteredTestplanInstance.Path
 Next RegisteredTestplanInstance
End Sub

Private Sub TestExecSL1_AdviseClearReport()
 rtbReport.Text = “”
End Sub

A LoadTestplan button is added

to allow users to control the

testplan loading. The return value

of the LoadTestplan method can

be used to update the interface

based on BeforeTestplanLoad and

AfterTestplanLoad events.

Private Sub cmdLoadTestplan_Click()
 TestExecSL1.LoadTestplan lstTestplans.Text
End Sub

After the testplan is loaded, the

chkReportPasses checkbox status

and testplan state information should

be updated on the interface to reflect

the correct status of the just loaded

testplan.

Private Sub TestExecSL1_AfterTestplanLoad(ByVal Path As
String)
 txtTxSLState.Text = “Loaded”
 If TestExecSL1.Testplan.Preference.ReportPass Then
 chkReportPasses.Value = vbChecked
 Else
 chkReportPasses.Value = vbUnchecked
 End If
 chkReportPasses.Enabled = True

 cmdRun.Enabled = True
 cmdRun.SetFocus
End Sub

5

B. Running and stopping
testplan

In all operator interfaces, after

selecting and loading the testplan,

Run and Stop buttons are the neces-

sary functions to control the states

of testplan execution. Below are the

source codes assigned to the Run

and Stop buttons.

Private Sub cmdRun_Click()
 TestExecSL1.Testplan.Run
End Sub

Private Sub cmdStop_Click()
 TestExecSL1.Testplan.Stop
End Sub

For actual applications, users may

consider adding coding to check the

testplan state (e.g. running or not

running) before executing the .Run

and .Stop TestExec SL methods.

Furthermore, users may also add the

Abort button to immediately terminate

a running testplan under certain

urgent situations. Aborting a testplan

is different from stopping a testplan

where all hardware and software

states will still remained active as

when it is terminated. However, the

latter can be coded with proper test

procedures to end a testplan.

C. Displaying the state of
testplan execution

The next important task is to display

the information of the testplan state

(e.g. testing, passed, failed, etc.) on

the operator interface.

Users can acquire the state informa-

tion directly through TestExec SL

state model and can customize the

display information such as the

display text, its properties and any

animation effects. These can be

coded for BeforeTestplanBegin and

AfterTestplanStop events in TestExec

SL. We use the return parameter

Reason in the latter to set the text

and color of the txtTxSLState text box.

Private Sub TestExecSL1_BeforeTestplanBegin(ByVal Count
As Long)
 txtTxSLState.Text = “Testing”
End Sub

Private Sub TestExecSL1_AfterTestplanStop(ByVal Reason
As HPTestExecSL.TestplanState)
 Select Case Reason
 Case HPTestExecSL.TestplanPassed
 txtTxSLState.ForeColor = vbGreen
 txtTxSLState.Text = “Passed”
 Case HPTestExecSL.TestplanFailed
 txtTxSLState.ForeColor = vbRed
 txtTxSLState.Text = “Failed”
 Case HPTestExecSL.TestplanStopped
 txtTxSLState.ForeColor = vbRed
 txtTxSLState.Text = “Stopped”
 Case Else
 txtTxSLState.ForeColor = vbRed
 txtTxSLState.Text = “Unknown Exit”
 End Select
End Sub

6

D. Showing the testplan report

Typically, to display testplan report

information, a rich text box will be

used instead of just a standard text

box. This is because a standard

text box has limited size, which is

not appropriate for long reports. A

checkbox is included in the interface

to offer the user the option to display

the detailed report information.

Private Sub chkReportPasses_Click()
 If chkReportPasses.Value = vbChecked Then
 TestExecSL1.Testplan.Preference.ReportPass = True
 Else
 TestExecSL1.Testplan.Preference.ReportPass = False
 End If
End Sub

Private Sub TestExecSL1_ReportMessage(ByVal Message As
String)
 rtbReport.SelLength = 1000000
 rtbReport.SelText = Message
End Sub

E. Exiting the operator interface

Last but not least, a complete

operator interface should have an exit

button to unload the application.

Private Sub cmdExit_Click()
 Unload Me
End Sub

Besides the appearance and layout,

useful prompts and status information

are also vital to an operator interface

for improving the user interactivity.

Direct and precise messages are

essential to guide the operators on

their tasks. In some cases, keyboard

shortcuts are also practical to have

on top of mouse navigation features.

One of the main reasons to create a

customized interface is to control the

user access to the test system. The

level of access is very much depen-

dent on the user types — operator,

supervisor, developer and administra-

tor. TestExec SL allows you to create

a single interface with multiple logins

for different level of access.

Accessing External
Hardware Resources

Other than communicating with

TestExec SL controls, the operator

interface can also be customized to

access external hardware resources

for partially or fully automated

manufacturing lines. You may want to

control switches and sensors using a

digital I/O card or a bar code reader

through RS-232 serial interface. In the

TypicalOpUI example, you will learn

how to access the external bar code

reader from the operator interface.

It synchronizes the testplan with bar

code reader events.

There are two methods in writing

Visual Basic codes to interact with

the external hardware resources from

operator interface. The first method is

to access the hardware directly via an

I/O interface and the second method

is to interact with TestExec SL, which

in turn controls hardware via its

standard I/O interface.

What constitutes a basic operator

interface is usually not sufficient for

an actual manufacturing environment

due to limited functionality. More

event management coding is needed

to make the interface more robust.

For example, the LoadTestplan button

should only be enabled when a

testplan is selected.

More often than not, an operator

interface also requires some error

trapping routines and needs to be

more informative and interactive.

Additional information (e.g. company

logo, progress bar, and test yield

information) will certainly improve

the usability of the interface.

Additional Enhancement Features
for Operator Interface

7

For more information and other

literature, please go to

www.agilent.com/find/testexec and

www.agilent.com/find/ftforum.

Conclusion References and Appendices

This application note explains the

basic features of a typical operator

interface and serves as a good intro-

duction to learning the development

of an operator interface for beginners.

For more advanced learning and

customization of the operator inter-

face, we recommend you to refer the

TypicalOpUI sample operator interface

which comes together with TestExec

SL installation. It includes several

layers of error checking, extensive

management of the state of controls

and also support of external hardware

for manufacturing automation. You

can use the sample source code

almost immediately for your project

with minimal modification.

Testplan-level events
AdviseClearReport Indicates that report output is being cleared at the

beginning of a run of the testplan. Typically triggers once

at the beginning of a run of the testplan, even if the

testplan will loop.

AfterTestplanLoad Indicates that a new testplan has successfully been

loaded.

AfterTestplanPause Indicates that TestExec SL has entered a paused state,

and returns the reason why the testplan paused.

AfterTestplanStop Indicates that TestExec SL has halted, and returns the

reason why the testplan stopped.

AfterTestplanUnload Indicates the testplan has been unloaded.

BeforeTestplanBegin Indicates that a pass through the testplan sequence is

about to begin. Also occurs when testplan execution

resumes via calling the Continue method.

BeforeTestplanLoad Triggered in response to a LoadTestplan method.

ReportMessage Indicates a new “block” of report output has arrived.

Test-level events
AfterTestDone Triggered after the current test fi nishes executing.

BeforeTestBegin Triggered before the next test in the testplan begins

executing.

ReportMessage Indicates a new “block” of report output has arrived.

Miscellaneous events
AdviseUpdate Triggers to let the operator interface update its display in a

way that does not interrupt the critical timing of a testplan.

UserDefi nedMessage Triggers to notify the operator interface that a user-defi ned

message has arrived.

Remove all doubt

Our repair and calibration services will

get your equipment back to you, per-

forming like new, when promised. You

will get full value out of your Agilent

equipment through-out its lifetime.

Your equipment will be serviced by

Agilent-trained technicians using the

latest factory calibration procedures,

automated repair diagnostics and genu-

ine parts. You will always have the utmost

confidence in your measurements.

For information regarding self main-

tenance of this product, please

contact your Agilent office.

Agilent offers a wide range of addi-

tional expert test and measurement

services for your equipment, including

initial start-up assistance, onsite edu-

cation and training, as well as design,

system integration, and project man-

agement.

For more information on repair and

calibration services, go to:

www.agilent.com/find/removealldoubt

Agilent Email Updates

www.agilent.com/find/emailupdates

Get the latest information on the

products and applications you select.

Agilent Direct

www.agilent.com/find/agilentdirect

Quickly choose and use your test

equipment solutions with confidence.

www.lxistandard.org

LXI is the LAN-based successor to

GPIB, providing faster, more efficient

connectivity. Agilent is a founding

member of the LXI consortium.

For more information on Agilent
Technologies’ products, applications or
services, please contact your local Agilent

office. The complete list is available at:

www.agilent.com/find/contactus

Americas
Canada (877) 894-4414
Latin America 305 269 7500
United States (800) 829-4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Thailand 1 800 226 008

Europe & Middle East
Austria 01 36027 71571
Belgium 32 (0) 2 404 93 40
Denmark 45 70 13 15 15
Finland 358 (0) 10 855 2100
France 0825 010 700*
 *0.125 €/minute

Germany 07031 464 6333
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
Switzerland 0800 80 53 53
United Kingdom 44 (0) 118 9276201
Other European Countries:
www.agilent.com/find/contactus
Revised: March 24, 2009

© Agilent Technologies, Inc. 2009
Printed in USA, July 1, 2009
5990-4290EN

Product specifications and descriptions
in this document subject to change
without notice.

www.agilent.com
www.agilent.com/find/testexec
www.agilent.com/find/ftforum

Microsoft is a U.S. registered trademark of

Microsoft Corporation.

